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LETTER TO THE EDITOR 

Semiflexible polymer in the half plane and statistics of the 
integral of a Brownian curve 

Theodore W Burkhardtt 
Sektion Physik der Ludwig-Maximilians-Universi~ D-80333 Munich, Federal Republic of 
Germany 

Received 29 July 1993 

Absiraci. A continuum model of a polymer with non-zero bending energy. 0uclualing without 
overhangs in the half plane, is considered. The exact partition function is obtained from the 
Marshall-Watson solution of the Kiein-Kmnen equation for Brownian motion in the half space. 
The partition function contains information on probabilities associated with the integral of a 
Brow- curve and reproduces Sinai’s rSf4 result for the asymptotic first passage time density. 
The r5n dependence of a different passage probability implies a first-order polymer adsorption 
transition for short-range pinning potentials. 

s 
In this letter a simple continuum model of a linear polymer with non-zero bending energy, 
fluctuating without overhangs in the half plane x z 0, -m < t < 03, is considered. Here 
x and f are Cartesian length coordinates, and polymer configurations without overhangs 
correspond to single-valued functions x( t ) .  The partition function of the polymer is given 
by the path integral 

Z(x ,u ;xo ,  uo: t )  = Dx exp - df -K - + V ( x )  s I 1‘ [: (3 11 
where x and U = dx/dt denote the displacement and slope of the polymer at t ,  and xo and 
uo the same quantities at t = 0. The parameter K specifies the bending energy, and V ( x )  is 
a potential energy. 

The adsorption transition in this model has been studied for various classes of pinning 
potentials by Maggs et al 111 and by Gompper and Burkhardt [2] with approaches that are 
partially numerical. In this letter a complete analytic solution for short-range potentials is 
given, and a connection with the statistics of the integral of a Brownian curve is pointed 
out. 

In the case of ‘directed polymers’ [3-51 the action is the same as in equation (1) except 
that (d2x/dr2)z is replaced by (dxldt)’. The statistical weight Z(X ,XO;  t )  for directed 
polymers satisfies Schriidinger’s equation. Equation (1) leads to.the more complicated 
partial differential equation [ 1.21 

I a 1 a2 
- + U - - - - + + ( x )  Z ( x , u ; x o , u o ; t ) = O .  L a  at ax 2~ au2 

The factor 
will be omitted from now on. 

can be eliminated from equation (2) by rescaling x ,  U, f and V ( x )  and 
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Polymer configurations with discontinuities in slope cost an infinite energy according to 
equation ( I )  and are completely suppressed. The polymer cannot emerge from the boundary 
x = 0 with a positive slope. Thus the appropriate b o u n h  conditions for equation (2) are 

Z(x, U ;  xo. uo; 0) = 6(x - xo)6(u - uo) ( 3 4  

Z(O,u;XrJ,ur3; t )  = o  U > 0. (36) 
For a free polymer, i.e. V ( x )  = 0. the solution of differential equation (2) with boundary 

condition ( 3 4  in the unbounded x ,  t plane is given by [2] 

z ~ ( x .  U ;  xo, uo; i) = 31'2(2ir)-Lt-2exp(-3t-3[(x -xo - uot) 2 

- t ( x  - xo - uot)(u - uo) + $tZ(U - U O ) 2 1 ) .  (4) 
In this paper the exact solution of equations (2) and (3) with V ( x )  = 0 is obtained in 
the semi4nfinite geometry. ~A short-range pinning potential is then included within the 
framework of the 'necklace model' [6]. 

We begin by forming the Laplace transform of equations (2) and (3). This yields 

1 -  a a2 
s + U  ax - + V ( X )  Z ( x ,  U; xo, uo; s) = 6(x - XO)S(U - uo) ( 5 4  I 

i ( 0 ,  U ;  xo. uo; s) = 0 U > 0 
i 

where 

i ( x ,  U ;  xo. ug; s) = im dte-"Z(x, U ;  xo. uo; t )  . (5c) 

In the force-free case V ( x )  = 0 it is convenient to expand 2 in eigenfunctions 

$s .F(U)  = q S , - ~ ( - u )  = F-"6Ai(F"3u + F-'Ps) F > 0 (64 
of Schriidinger's equation 

for a particle in a constant force field 171. Here Ai is the standard Airy function [8,9]. The 
@$,F have the orthonormality property 

which follows from (6)  and the Hermiticity of the operator u-'(-dZ/du2 + s) with respect 
to the scalar product (fig) = l-:du uf*(u)g(u). The corresponding closure relation has 
the form 

m .  
~F[@~,F(-U)@S.F(-U') - @s,F(U)$s.F(U')I = U - ' 6 ( U  -U'). (76) 

From equations ( 6 )  and (76) one sees that differential equation ( 5 4  has the particular 

dF [O(x - xo)e-F(x-xaflG;,r(-u)$~,~(-uo) 

1 
solution 

~ o ( x ,  U; X O ,  UO; s) = im 
+e(xo - x ) ~ - ~ ' ~ ~ - ~ ) @ ~ . F ( u ) @ ~ , F ( u O ) I .  (8) 
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This solution, which clearly vanishes in the limit x 3 ioo,  represents the parktion 
function for the polymer in the unbounded x, t plane and is thus the Laplace transform 
of &(x, U; xo, UO; t )  in equation (4). The latter conclusion has been chccked by numerical 
integration. 

To satisfy the half-space boundary condition (Sb), one must add to 20 an appropriate 
solution 2, of the homogeneous form of (54). Both e-FX$s,F(-u) and eFx$s.F!u) satisfy 
the homogeneous differential equation, but the latter diverges for x -+ 00. Thus Z I  is given 
by 

f l ( . X ,  U ;  xo, Uo; s) = 1- d F  Wp(x0, uo; s)e-Fx?lrs,f(-u) (9) 

with the function WF(XO, uo; s) still to be determined. 

remarkable set of functions &F(u) that have the biorthogonality property 
To impose boundary condition (56). which only applies for U > 0, we make use of a 

lw dU U & , F ( - U ) $ ~ , F , ( - U )  = S(F - F') F ,  F' > 0 (104) 

on the semi-infinite interval U > 0 and satisfy 

$ss .F(U)  = 0 U > 0 .  ( 1 Ob) 

Such a set was constructed by Marshall and Watson [lo] in connection with the Fokker- 
Planck or Klein-Kramers equation [ll-131 

(11) 
a a a I a* [,", ax au  au mpau 

-+U- -201- - + -41 P(x,u: t )  = 0 

for the distribution function P ( x ,  U; f )  of Brownian particles moving with coefficient of 
friction y in a medium with temperature 7 = (kp)-' and subject to a constant force -2ma. 
Attempts to solve equation (1 1) in the semi-infinite geometry with the absorbing boundary 
condition P(0, U ;  t )  = 0, U > 0 have a long history (see I131 for a summary). Marshall 
and Watson made a major advance and obtained the solution in terms of functions with 
properties analogous to (10). 

In the limits 01 + 0, y = m p  3 0. the Klein-Kramers differential equation (1 1) reduces 
to our differential equation (2) for 2, and the functions of Marshall and Watson take the 
form 

Equation (12) implies the functional form &F(u) = F - ' / 6 @ ( F ' / 3 ~ ,  Fr2/3s). The function 
@(U, S) is shown in figure 1. For -1 << U e 0, @(U, S) n-I e~p(-$S~/~)(-3U)'/', 
and for U > 0, @(U, S) vanishes, as announced in quation (lob). 

Knowing the explicit form (12) of the @Q(u),  one can readily construct the solution to 
differential equation (54) for 2 with boundary condition (56). It is given by 

i = To + il (134 
with 20 in (8) and 

iI(X, U ;  xo. uo; s) = -- 2n 1 - d F i m  dG ( F  + G)-' 
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This can be checked as follows. Since 20 solves differential equation (54) and 21 in 
equation (13b) has the form (9). 20 + 21 also satisfies the differential equation. To see 
that 20 + 21 satisfies boundary condition (5b), note that only the second term in 20 (see 
equation (8)) contributes in the limit x + 0. For x = 0, U > 0 this term is cancelled by 
21, since the right-hand side of (12) vanishes. 

Calculating Z analytically for arbitrary f by inversion of its Laplace transform 5 in 
equations (8) and (13) does not appear to be feasible. However, the asymptotic form of Z 
for large t can be obtained analytically from the behaviour of 2 for small s. From (8) and 
(13) one finds that 2 and az/as remain finite in the limits + 0 and that azi/asz diverges 
as s-'j2. The divergence stems from the factor ( - ~ / Z ) S - ~ / ~ ( F - ~  + G-I) introduced in the 
integrand of equation (13b) (along with other contributions) by differentiating twice. The 
s-'/' behaviour corresponds via (54  to the long-time behaviour Z - t-5fi. Specifically 

n1/2 lim t51ZZ(x, U; XO. UO; t )  = lims'l2-2(x, U; no, UO; s) = J(x, u)J(xo, -UO) a2 - 
I+CC s - r ~  ~ as2 

(144 

J(x, U) = - d i  F-7/6[e-FxAi(-F1/3~) - Ai(O)] . ( 1 4 ~  

where 

2x'/2 1 
Evaluating the integral in (14b) and substituting the result in (14a) yields the asymptotic 
expression for large t 
Z(X, U; xo. UO; t) % 4 x 32/3rr'/2t-5fi(~~o)1/6H(~~-'/3)H(-~~01/3) (154 

. .  . .  

where M(a, b, x )  is Kummer's confluent hypergeometric function [SI. It is simple to verify 
that equation (15) does indeed satisfy differential equation (2) in the large-t limit. 

The function H ( y )  is positive and decreases monotonically with increasing y .  From 
the asymptotic forms [8] 

constant x y-5/2 exp(-y3/9) y + 00 
(16) 

Y - t - 0 0  
H ( Y )  

t 

.-.. s=1 \ 

I 

io.2b -0.d -0.2 0.0 

U 

Figure 1. The function 'WU. S) defined below equation (12). 
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one sees that the boundary condition (3b) is indeed satisfied by (15). Equation (15) is in 
complete agreement with the result Z - t - 5 / 2 ~ 1 / 6 H ( ~ ~ - 1 / 3 ) ,  obtained with semi-numerical 
approaches in [1,2]. 

The adsorption or pinning transition of an infinitely long polymer in the presence of a 
short-range potential V ( x )  attracting it to the boundary will now be considered, as in [1,2], 
within the framework of the necklace model 161. The polymer is built up of segments 
(beads of the necklace) that leave the boundary with zero slope and return to the boundary 
with zero slope. (The approach to the boundary is tangential since discontinuities in slope 
cost an infinite energy.) The relevant quantity for determining the order of the transition 
is the statistical weight Z ( a ,  0 a, 0; t )  of the bead, where a is a microscopic distance 
corresponding to the range of a contact potential. The phase transition in the necklace 
model 161 is first-order if the statistical weight of the bead has the asymptotic form t-* 
with II, > 2 and second order for 1 < II, < 2. From equation (15) II, = 5 ,  so that the 
polymer adsorption transition is first order. 

The results of this letter are also applicable to two polymers with non-zero bending 
energy, fiuctuating without overhangs in the unbounded x ,  f plane and interacting via a short- 
range attractive potential V ( x j  - x2) with a hard core, ensuring x j  > x2. The introduction 
of relative and centre-of-mass coordinates x = x1 - xz, X = 4(x1 + xz)  reduces the two- 
polymer system to a single polymer in the half space x > 0. Thus the binding-unbinding 
transition of the two polymers is also first order. 

We note a connection between the polymer partition function and the probabilities 
associated with the crossing of a line by the integral of a Brownian curve. Sinai [14] has 
analysed a discrete model with random variables A U ~ ,  f = 1,2,3, . . . that take the values 
3 ~ 1  with equal probability. Thus uI = Auj + Au2 + . . . + AIL, corresponds to a Brownian 
curve and x,  = uj + u2 + . . . + ut to the integral of a Brownian curve. He proved several 
theorems associated with the first crossing of the line x = 0 by x, and showed that the 
probability that xp > 0 for all t' = 1,2, . . . , t decays asymptotically as trL14. 

In our continuum polymer model u(1) also corresponds to a Brownian curve and x ( t )  to 
its integral. One expects the discretization to be irrelevant in the long-time limit, and it will 
now be shown that the f-'14 law also follows from the statistical weight Z ( x ,  U; XO, UO; s) 
for the polymer given in equations (8) and (13). 

Since polymer configurations that intersect the boundary x = 0 with non-zero'slope at 
t' only contribute to Z ( x ,  U; XO,  uo; t )  for t < t', the 'survival probability' 

d x o ,  110; t )  = L m d x  pu Z ( X ,  U ;  no, uo; t )  (17) 

also represents the probability that the integral x ( t )  of a Brownian curve beginning at XO. uo 
has not crossed the line x = 0 in a time f .  From equation (2) 

- ~ ( x o ,  UO; t) = - P ( X O ,  UO; t )  = 
m a 

du uZ(0, U: XO.  UO; t )  (18) 
at 1, 

where p(x0, uo; t )  is the first passage time density. 

one obtains 

1 - sG(xo, uo; S) = ij(xo, UO; S) 

Substituting (8) and (13) into (17) and using (6). (18) and the relation Jzdz Ai@) = 1, 
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for the Laplace transforms of q(x0,  UO;  r) and p(xo, U O ;  t ) .  Here r(a. x )  is the incomplete 
gamma function [8,9]. Analysing equation (19) for small s, one finds $(xo, U,,; 0) = 1, 
meaning that the total probability f," dr p(x0, UO; r) that the polymer intersects the boundary 
with positive slope is 1 or, equivalently, that the survival probability q(x0, U O ;  t) vanishes 
in the limit t + W. The quantity ay/as diverges as r 3 I 4 .  Specifically 

in terms of the function H ( y )  of equation (1%). This corresponds via ( 5 4  and (18) to the 
long-time behaviour 

q(xo. u0; t )  (21) &p(Xo,  u0; t )  = 35/6(2ir)I/zr(a)-Lr-1/4~1/6 H(-uox, -113).  

Thus, in the polymer model the survival probability decays asymptotically as r-lJ4, and the 
first passage time density as r5l4, as in Sinai's discrete model [141. 

Finally we note that the adsorbtion transition of a self-avoiding walk or polymer in two 
dimensions, with overhangs included but with zero bending energy, is second order [15]. 
The bending energy plays a role on length scales smaller than the persistance length but 
is expected to be an irrelevant variable in the adsorption transition [I]. The omission of 
polymer configurations with overhangs is a reasonable approximation in the adsorbed phase. 
However, it is clearly a relevant modification in the adsorption transition since it leads, as 
we have seen, to a first-order transition. 

I thank Hany Fried, Gerhard Gompper, Michael Schick, Herbert Spohn, and Herbert Wagner 
for useful discussions. The hospitality of Herbert Wagner and co-workers at the University 
of Munich is much appreciated. This work was supported by the WE-Heraeus-Stiftung. 
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